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1. Introduction

The last few decades have witnessed a broadening of the philosophy of
mathematics, beyond narrowly foundational and metaphysical issues, and
towards the inclusion of more general questions concerning “mathematical
methodology” and “mathematical practice” (a development parallel to an
earlier broadening of the philosophy of science). There is now widespread,
and growing, interest in topics such as: concept formation and conceptual
change In mathematics, the role of ambiguity and Inconsistency in mathe-
matical research, the applicability of mathematics, and even sociological or
anthropological questions concerning the mathematical community. Part of
this broadening, although a part that remains relatively close to founda-
tional and metaphysical issues, is the turn towards a “new epistemology”
for mathematics. The latter includes the study of topics such as: the role of
visualization in mathematics, the use of computers in proving mathematical
theorems, and the notion of explanation as applied to mathematics.®

The present paper is a contribution to this new epistemology. More par-
ticularly, it is an attempt to bring into sharper focus, and to argue for the
relevance of, two related themes: “structural reasoning” and “mathematical
understanding”. As the notion of understanding is vague and slippery in
general, as well as very loaded in philosophical discussions of the sciences,
the latter label has to be handled with care, though. It will have fo be clar-

& Compare, e.g., Mancosu, Jprgensen and Pedersen,* Ferrsirds and Gray,? Van Kerkhove
and Van Bendegem,® and Mancosu.®
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ified what, if anything (or anything reasonably precise}, is to be meant by
“understanding” in connection with mathematics. Similarly, while talking
about “structural” reasoning in mathematics may be suggestive, that term
too requires further elaboration. My clarifications and elaborations will be
tied to a specific historical figure and period: Richard Dedekind and his
contributions to algebraic number theory in the nineteenth cenmtury. This
is not an incidental choice; Dedekind’s case is particularly pertinent in $his
context, as I also hope to establish.

T will proceed as follows: In Section 2, I will provide a brief summary of
Dedekind’s work on the foundations of mathematics, as well as of its usual
perception in the philosophy of mathematics. In Section 3, I will turn to his
more mainstream mathematical work, especially in algebraic number the-
ory, including its usual perception by historians of mathematics. In the next
few sections, the epistemological significance of this mathematical work will
be explored further. In Section 4, I will review corresponding analyses in
three pietes of secondary literature: Stein,® Ferreirds,® and Avigad.”™" In
Section 5, I will introduce the notions of style of reasoning and explanation
to deepen their analyses. In Section 6, my views on mathematical explana-
tion and, correspondingly, on mathematical understanding will be clarified
further. Finally, in Section 7, I will indicate how the epistemological issues
at the core of this paper can be seen as being of a piece with foundational
and metaphysical issues.

2. Perceptions of Dedekind by philesophers of mathematics

While Dedekind did not publish any primarily philosophical writings, his
foundational work is familiar to most contemporary philosophers of math-
ematics. His contributions in $hree areas, in particular, are well known: the
foundations of analysis, the foundations of arithmetic, and the rise of mod-
ern set theory. Let me remind the reader briefly of those contributions, as
well gs of their typical characterizations by philosophers.

Dedekind is probably best known for his introduction and treatment of
‘the real numbers in terms of “Dedekind cuts” (first presented in Dedekind®).
"This treatment is usually seen as a contribution to the *arithmetization of
analysis” in the nineteenth century. In the twentieth century, it became part
of the standard account of the real numbers within axiomatic set theory.
The treatiment is closely related o, indeed was based on, Dedekind’s anal-

b For further details concerning these publications, see the bibliography. For references
to other relevant literature, compare the following footnotes.
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ysis of the notion of continuity {in the sense of line-completeness). That
analysis was later codified as one of the axioms for a complete ordered
field — one of the “Dedekind-Hilbert Axioms”, as they should perhaps be
called — and is, as such, definitive for the classical conception of the real
numbers.*

Dedekind’s investigations into the foundations of arithmetic, in
Dedekind,*? are known almost as well. In that case he was, in effect, led to
the “Peano Axioms” —- or the “Dedekind-Peano Axioms” — for the natural
numbers. He also proved what we now call the categoricity of this system
of axioms; he constructed a standard model for it, in the form of 2 “simply
infinite system”; and the whole account was grounded in an analysis of the
methods of proof by mathematical induction and definition by recursion.
Dedekind’s account of the natural numbers became, again, & standard part
of set theory in the twentieth century, especially afier it was made clear,
by Zermelo, that it could be extended to ordinal numbers, induction, and
recursion in the transfinite case.”

As mentioning the notion of a simple infinity already flags, the ap-
proach taken in Dedekind'? includes a systematic reflection on the notion
of infinity, as well as on those of set and function. Especially important
in this connection are: Dedekind’s explicit adoption of a genersl, exten-
sional notion of set; his paraliel adoption of a general, extensional notion
of function {without reducing functions to sets); and his definition of infin-
ity in terms of what is now called being Dedekind-infinite. Dedekind made
other contributions to the early development of set theory as well, partly
in correspondence with Cantor, such as his proof of the Cantor-Bernstein
theorem.©

Standard sccounts of Dedekind’s foundational work, such as the one
just given, lead naturally to three views about him: a) that he was a strong
proponent, indeed one of the founding fathers, of “classical rathematics”
{with his acceptance of the actual infinite, his adoption of generalized no-
tions of set and function, his rejection of constructivist restrictions, etc.);
b} that he was a main contributor to set theory, indeed to set theory con-

= For Dedekind’s role in the arithmetization of analysis, see Boyer and Merzbach? (ch. 25,
pp. 563-66), and Cooke.!? For more on the “Dedekind-Hilbert Axioms”, see Awodey and
Reck.1?

b For Dedekind’s contributions to the foundations of arithmetic, see Reck™® and For-

reirds. >4
¢ For a historically and philosephicaily rich discussion of Dedekind’s role in the develop-
ment of set theory, see Ferreirds,® especially chs. 3, 4, and 7.
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ceived of as a foundation for all, or at least large parts, of mathematics (with
his set-theoretic treatments of the natural and real numbers, his analyses
of continuity, induction, etc.); sometimes also, c) that he was as a direct
precursor of, and a strong influence on, the “formal axiomatie” approach
chempioned by Hilbert and Bernays later (with his implicit formulation
of the axiore systems for the natural and real numbers, his attention to
questicns about categoricity, consistency, ete.).4

There is & lot of truth in these standard views about Dedekind, and
they do bring out important aspects of his work. In what follows I will
attempt to show, however, that in some ways they do not go far enough —
they neglect or underemphasize & philosophically significant dimension of
Dedekind’s work. To prepare the corresponding arguments, it helps to turn
o his less foundational and more straightforwardly mathematical works,
starting with their standard perceptions by historians of mathematics.

3. Perceptions of Dedekind in the history of mathematics

In addition to his foundational work, Dedekind made several well-known
contributions to other parts of mathematics, especially to algebra and re-
lated fields. For instance, his work contains one of the first, probably even
the first, modern presentation of Galois theory. He also published impor-
tant papers on what were later called “lattices”; in fact, he characterized
lattices for the first time in an explicit, general, and conceptually clear
manner. And in collaboration with Heinrich Weber, he introduced a novel
approach to the study of algebraic functions, connected with a new treat-
ment of Riemann surfaces, snd leading to a purely algebraic proof of the
celebrated Riemann-Roch theorem. '
Dedekind’s most important and most influential mathematical work,
however, was in algebraic number theory. In historical accounts of
nineteenth-century mathematics he is, thus, routinely mentioned for two
things: his invention of the theory of ideals, seen as a crucial new tool in
the study of algebraic integers and algebraic number fields; and his introduc-
tiom, in that context, of the abstract mathematical notion of a field, applied
by him to all subfields of the complex numbers and including adopting the
word “fleld” for this purpose {(or rather the corresponding German word,

d Seeing Dedekind as a proponent of classical mathermatics is standard wisdom, I believe.
For Dedekind’s role in the development of modern set theory, see again Ferreirés.% For a
sophisticated interpretation of Dedekind as a precursor of Hilbert and Bernays, see Sieg
and Schlimm.'?
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“Kérper”}.* Both contributions occur in supplements to lectures notes on
number theory, based on lectures by his teacher Dirichlet but edited by
Dedekind, and most maturely, in the fourth edition of that work (Dirichlet
and Dedekind;!” compare also Dedekind?®).

Two general aspects of this mathematical work and of its impact are typ-
ically emphasized in historical accounts. First, Dedekind’s novel approach
to algebraic number theory, as embodied in his ideal theory, did not go
unchallenged and unopposed. Kronecker’s parallel work in this area, culmi-
nating in his divisor theory, was seen as a significantly different alternative
to Dedekind’s from early on. Kronecker himself kept emphasizing the more
concrete, finitary, and constructive aspects of his theory, while being criti-
cal of the abstract, infinitary, and non-constructive aspects of Dedekind’s.
Second and in spite of such criticisms, Dedekind’s approach had a strong
influence on twentieth-century mathematics, through the works of Hilbert,
Noether, van der Waerden, Bourbaki, and others. This influence was of-
ten acknowledged explicitly, e.g. by Emmy Noether. Reflecting on the basic
methodological orientation of her own, itself very influential, work in alge-
bra and topology, she stated: “It's all already in Dedekind!?

As Dedekind’s mathematical works tend to be much less well known to
philosophers than his foundational contributions, let me add a bit $o this
brief summary (before proceeding to a deeper analysis in later sections).
In particular, what are the main poals and challenges in Dedekind’s and
Kronecker’s theories in algebraic number theory?

Both theories were heavily indebted to earlier works by Gauss, Dirich-
let, and Kummer. For all of these mathematicians the basic goal was the
solution of various algebraic equations. A famous example is provided by
Fermat’s Last Theorem, which concerns the existence, or lack of existence,
of integer solutions to the equation z™ + y™ = 2", for various exponents
n. Gauss and Kummer approached this (very difficult) issue by studying
certain extensions of the ordinary integers, as well as of the fields of num-
bers that contain them. Gauss considered what happens when you add the
“Glaussian integers” (o + bi, with o and b regular integers and i = +/—1);
Kummer investigated more complex “cyclotomic integers”. Along the way,
it became clear that a crucial issue, and a major stumbling block, was the
following: In some such extensions of the ordinary integers — In some “in-

* See again Boyer and Merzbach® (now ch. 26, pp. 594-6), as well as Stillwetl!® {ch. 21).
¥ See McLarty®® for the source of the quotation (p. 188), and more generally, for
Dedekind’s influence on Noether. Edwards®® provides a comparative discussion of
Dedekind and Kronecker.

ps——
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tegral domains”, as Dedekind called them® — the familiar theorem about
unique factorization into powers of primes fails. A crucial question became,
then, whether a suitable alternative for such factorization conid be found.
Kummer attempted o recover unique factorization by introducing
“deal miumbers”. While this led to striking progress, some basic questions
remained. In particular, how exactly was one to think about the nature of
these new “numbers”; and what was the best way to generalize Kummer’s
approach, if this was possible at all? As a consequence, the range of appli-
cability of his ideas remained unclear, to some degree even the validity of
his results. Both Kronecker and Dedekind tried to justify and extend Kum-
mer’s work. Kronecker did so by considering in depth — and as part of an
essentially computational task (starting from & finitary basis and preserv-
ing decidability) — a range of constructible domain extensions. Dedekind
investigated — in a more general, abstract, and non-constructive way —
arbitrary algebraic number fields and the integral domains they contain.
He also replaced Kummer’s “ideal numbers” by his “ideals”, defined in an
explicitly set-theoretic way (as certain infinite sub-sets of the complex num-
bers), and he recovered unique factorization that way.¢ Both Kronecker’s
and Dedekind’s approaches led to further results right away, as well as to
important developments later on.®
Kronecker’s and Dedekind’s works are similar insofar as both constitute
“grithmetic” approaches to algebra. (They are two instances of the “arith-
metization of algebra” in the nineteenth century, parallel to the more famil-
iar “arithmetization of analysis”.) Apart from that, they differ markedly.
Comparing the two mathematicians and their lasting impacts, the historian
of mathematics Harold G. Edwards comments:

Kronecker's brillianee cannot be doubted. Had he had a tenth of
Dedekind’s ability to formulate and express his ideas clearly, his
contributions to mathematics might have been even greater than
Dedekind’s. As it is, however, his brilliance, for the most part,
died with him. Dedekind’s legacy, on the other band, consisted not
only of important theorems, examples, and concepts, but of a whole

© In current terminology, an integral domaln is a ring that is commutative under multi-
plication, has a unit element, and has no divisors of zero.

d A ideal I in an integral domain {or, more generally, a ring) R is a subset that forms
an additive group such that, forall 2 € Jand y € R, zy € 1. The crucial theorem is: In
a domain R of algebraic integers, any ideal [ of R can be represented uniquely {except
for the order of the factors} as a product of prime ideals.

¢ Besides Edwards®® and McLarty,}® compare Reed®? (ch. 4) and Corfield®® (ch. 8.
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style of mathematics that has been an inspiration to each successive
generstion. (Bdwards,”® p. 20)

On the surface, this passage is complimentary of Dedekind’s work, high-
lighting his “great contributions” and his corresponding “legacy™. However,
the way in whick Kronecker’s “brilliance” is juxtaposed to Dedekind’s “abil-
ity to formulate ideas clearly” may give one pause. Kronecker certainly was
a brilliant mathematician; and Dedekind had that ability. But is the latter
all that is noteworthy about Dedekind in this connection; doesn't his work
exemplify other, equally or more significant, virtues as well?f -

Edwards also attributes “important theorems, examples, and concepts”
to Dedekind. More intriguingly, he mentions 2 Dedekindian “style of mathe-
matics” that inspired later generations of mathematicians. The latter raises
another question, however: How is the word “style” to be understood here;
in particular, is it used in a merely psychological or sociclogical sense, or
is more at issue?® Ralsing this question is also meant to lead us beyond
Edwards’ remark. The further, more important issue, for present purposes,
is whether “style” could be used in a philosophicaliy more substantive sense
in this context. Or more generally, is there anything else to be said about
the epistemological significance of Dedekind’s approach, compared to Kro-
necker’s and in itself? These are the questions [ want to turn to now. Actu-
ally, a few other philosophers of mathematics have already started to move
in that direction, and I want to follow their lead.

4. Philosophical analyses of Dedekind’s mathematical work

There is a relatively small, but fluminating and suggestive, series of com-
mentaries in the literature in which Dedekind’s approach to algebraic num-
ber theory, and with it, his methodology in general, is analyzed with an
eye towsards its epistemological significance. It would be worth reviewing,
and then building on, all of them; but I will have to restrict myself to three

fIn the background of such remarks are Edwards’ strong and well-known sympathies for a
Kroneckerian approach to mathematics; compare Edwards.?3?4 T be fair, he does have
more {o say about Dedekind, also in Edwards;?® but the general perspective assurmed s
always Kronecker’s.

& Other historians of mathematics, such as Ivor Grattan-Guinness, have wntten about
the “fashion” Dedekind’s work inspired, as well as the “popularity” set theory gained
later on {Grattan-Guinness,® p. 535). Elsewhere Edwards writes about a “new ortho-
doxy” in this connection, one that was “consclidated by Hilbert” and that “has reigned
ever since” {Edwards,?¢ p. ix).
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here: Stein,? Ferreirés,® and Avigad.™?

The focus in Stein’s paper is not so much on Dedekind, but ou a Imore
general change that took place in nineteenth-century mathematics, espe-
cially in its methodology. Stein associates this change with a group of
mathematicians who infiuenced each other directly: from Gauss and Dirich-
let through Riemann, Cantor, and Dedekind, on to Hilbert and Minkowski.
Dirichlet is seen as the “poet’s poet” in this group. Dedekind, although
not the primary focus of Stein’s study, is very important as well, especially
because of his close association with Dirichlet. In a retrospective tribute to
Dirichiet at the beginning of the twentieth century, Minkowski captured the
transformation at issue in a nutshell; in Minkowski’s memorable phrase, it
consisted of adopting Dirvichlet’s guiding principle “to conguer the problems
with a minimum amount of blind caleulation, a maximum of clear-seeing
thought” {quoted in Stein,® p. 241).

According to Stein, this principle shapes Dedekind’s approach quite
generally. It guides his reconceptualization of the foundations of arithmetic
and analysis in terms of abstract sets and functions, instead of concrete
numerals, formulas, and their intuitive applications, as was usual before;
it underlies his innovasive presentation of Galols theory in terms of field
extensions and their automorphisms, rather than substitutions in formu-
1as and functions; and it is perhaps most evident in his algebraic number
theory. Concerning the latter, the contrast between “clear-seeing thought”
and “blind calculation” amounts to this: While Kronecker, like Kummer
and Gauss before him, works with a restricted number of constructible
cases, trying to extract computational information, Dedekind considers an
enlarged class of algebraic structures, here number fields, always searching
for general, not necessarily decidable, and characteristic concepts.

Quoting related remarks by Cantor, Stein characterizes the shift towards
the more “conceptusl” mathematics to be found in Dirichlet, Dedekind, Rie-
mann, and others also as a “freeing” of mathematics. Previous mathematics
tended to be confined to the physically applicable and intuitive, especially
the geometric, on the one hand, and to the calculable and constructive, on
the other. It is not that such a narrower conception — with its emphasis on
“the applied force of the formula”, to quote Minkowski again — can’t lead
to new results. Indeed, Kronecker’s brilliant extension of Kummer’s work

2 Also highly relevant are: Haubrich,?” Reed,?! and Corry.2® 1 will focus on Stein,
Ferreirss, and Avigad because their expressly philosophical concerns seem clogest to
mine. But the difference is only gradual, and I intend o pay close attention to the others
in future work.
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shows that it can. But the reorientation advocated by the champions of
“mathematical freedom™ can, and did, lead to an important broadening of
mathematics, including the formation of various new and fruitful concepts.
To use one of Stein's own happy phrases, it leads, indeed it gives pride of
place, to the “free exploration of conceptual possibilities”.?

As Stein notes, Dedekind’s allegiance to such a more freely exploratory
mathematics wend hand in hand with, indeed involved centrally, the use
of set-theorstic technigues and proofs, instead of the earlier reliance on
intuitive constructions and calculations. Stein elaborates on that aspect to
some degree. In Ferreirds® a lot more can be found on the topic. Ferreirds’
book does again not focus on Dedekind alone. Tt discusses his employment
of set-theoretic techniques in the context of a more general account of the
rise of modern set theory, from the ninetesnth into the twentieth cendury.
According to Ferreirds’ account, Dedekind is one of the central figures in the
early history of set theory. This is so, among others, because he explicitly
adopted two ideas: to treaf sets as mathematical objects in themselves; and
to allow for the use of infinite sets, indeed to use them as a central tool for
concept formation in mathematics.

Besides shedding new light on Dedekind’s role in the rise of modern
set theory, Ferreirds's discussion of him also confirms, and extends, some
of Stein’s insights into the significance of his work in algebraic number
theory, and of his mathematical methodology more generally., As analyzed
by Ferreirds, this methodology involves: the consideration of whole classes
of systems, e.g., of the class of arbitrary sub-fields of the complex numbers;
their abstract treatment in terms of general laws, such as the laws that
characterize number fields, integral domains, or simple infinities; and more
specifically, the definition of operations on mathematical systems in terms
of their behavior as sets, thus independently of particular formalisms and
caleulations based on them.

The last point — the preference for general, abstract, and
representation-invariant specification of mathematical operations and ob-
jects — can be exemplified well by a particular aspect of Dedekind’s theory
of ideals. Dedekind labored for quite s while — through various suppie—
ments to Dirichlet’s “Lectures on Number Theory”, published over three
decades — to find a good, perhaps even the best, way to define an ex-

B in Tait?® the emphasis on “free mathematics” is discussed further, in connection with
Cantor and Dedekind; compare also Reck.!® The search for “characteristic concepts”, by
Riemann, Dedekind, and Frege, is discussed more in Tappenden, 331l and the relevant
parts of Mancosu.4
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tended notion of “integer”, applicable to number felds in general; similarly
for “ideal divisor” and, especially, for “prime divisor” (as needed to ensure
unique factorization). Now, Kronecker worked on solving a paraliel prob-
lem. But characteristically, Kronecker’s solution was not meant to apply as
generally; it did not employ set-theoretic techniques, especially not the use
of infinite sets; and it was tied to specific formalisms and representations (as
needed by Kronecker to ensure computatility). In the end, their respective
solutions had different advantages and disadvantages.

In the present paper, I am mainly concerned with the philosophically
significant advantages of Dedekind’s approach, in this case and more gen-
erally. It is standard to assume that Dedekind constructed his ideals and
related mathematical objects in an explicitly set-theoretic way because the
“ideal nurnbers” appealed to by Kummer had provoked mistrust or doubs,
since they lacked an explicit, secure foundation. But a standard rejoinder,
especially by constructivists, is this: As the “foundastional crisis” in the early
twentieth century has shown, the use of sets, especially infinite sets, is not
necessarily more secure; but then, their use should be seen with mistrust
too, shouldn’t 187 Whether or not one agrees with this rejoinder, I do not
think — snd this should have become apparent by now — that providing a
secure foundation for certain parts of mathematics was the only objective
for Dedekind. Arguably it was not even his main objective, particularly
in algebraic number theory; nor was it his philosophically most significant
achievement, at least from a methodological point of view.

An additional, more recent attempt to get at Dedekind’s main method-
ological achievements — focused squarely on his approach to algebraic num-
ber theory — is Avigad.” In this paper, several of Stein’s and Ferreirds'
observations are confirmed yet again, while many number-theoretic details
are added and the analysis of their significance is deepened. Like Stein and
Ferreirds, Avigad mentions the use of set-theoretic techniques by Dedekind,
including his acceptance of the actusl infinite. Once more, he emphasizes the
contrast between Dedekind’s abstract, conceptual, or structural approach,
on the one hand, and Kronecker's focus on algorithmic tractability and de-
cidability, on the other. And once again, he puts his finger on Dedekind’s
aim to find general, mathematically fruitful concepts or characteristics.

A related aspect, mentioned already in connection with Ferreiréds, is
discussed in considerable detail by Avigad as well: the fact that, according
to Dedekind, mathematical objects and operations should be defined in a
representation-invariant way. Avigad also sheds further light on two related
ways, touched on by Stein, in which Dedekind characterizes his own pro-
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cedure: as an attempt to distinguish “internal” from “external” properties
of mathematical entities; and as an attempt to keep mathematical theories
as “pure” as possible, Le., to avoid the admixture of “foreign” elements.
Examples are: Dedekind’s resistance to taking particular formalisms, typ-
ically tied to individual cases, t0 be more important than the underling
mathematical structure; and his rejection of appeals to geometric ideas in
his treatment of the foundations of arithmetic and analysis.

At several points, Avigad summarizes what is cruecial about Dedekind’s
approach, and what distinguishes it most significantly from Kronecker’s, in
terms of the adoption of certain methodological values and principles. Cen-
tral among them are: the preference for conceptual reasoning, as opposed to
algorithmic calculation; the preference for abstraction, generalization, and
the uniform treatment of as large a number of cases as possible, as opposed
to gaining computational information by focusing on a restricted number
of constructible instances; and the preference for identifying characteristic
internal properties, thus for a certain kind of simplicity and purity, in the
sense just indicated. It should be emphasized that these values are in ad-
dition to, and that they complement, Dedekind’s use of set-theoretic and
infinitary tools and techniques. Perhaps they are even what motivates and
what ultimately justifies his adoption of them?

I hope it is plausibie by now that Dedekind’s work does not just stand
out because of his exceptional expository ability.® Nor is it entirely satis-
factory, in the end, to characterize the difference between his approach and
Kronecker’s simply by pointing to Dedekind’s adoption of set-theoretic and
infinitary techniques, in contrast to Kronecker’s constructivist and finitist
procedures, aithough that is again part of the story. Various additional, per-
haps more basic, and arguably more important festures have come fo the
fore, in Stein’s, Ferreirds’, and Avigad’s studies. Now, can these additional
features be analyzed in any further, deeper way? More specifically again,
can the sense in which they are significant epistemologically be brought out
moze sharply, after having identified them? I will attetnpt to do so in the
next two sections.

© To prevent a possible misunderstanding, I do not mean to discount this aspect com-
pletely. Being able to present ideas clearly is crucial, e.g., in & pedagogical context; and
some of Dedekind’s most important ideas arose in just such a context; see Dedekind,®
p. 1. But there is quite a bit more t0 be szid about Dedekind’s approach, especially from
an epistemological point of view.

Dedekind, Structurel Reasoning, and Mathemaotical Understanding 161

5. Styles of reasoning and mathematical explanation

At this point, I want to come back to Edwards’ remark about a Dedekindian
“style of mathematics”. One question [ raised earlier was whether “style” is
used here in 3 merely psychological or sociological sense, or whether more is
at issue. More importantly, could “style” be employed in a philosophically
more substantive sense in this connection, whether or not Edwards does?
Let us consider the latter issue in some detail now.

In contrast to using “style” in a psychological, sociological, or anthro-
pological sense (including the idea of “national style” in mathematics),
also in contrast to using it in a personal, aesthetic, or art-historical sense
(the “style” of a writer or painter}, there is she way in which the notion
has been employed, and codified, by Tan Hacking,®*3% What Hacking talks
about specifically, in the context of the history and philosophy of science,
are “styles of reasoning”.® While he is reluctant to define what & style in
his sense is, at least in any reductive or formulaic way, he provides various
examples, including: the postulational style that characterized the math-
ematical sciences in Ancient Greece; the experimental style that arose in
early modern science; and the statistical and probabilistic style that, in the
nineteenth century, began to shape the social sclences. And he elaborates
on what is significant about such styles, namely:

Every style of reasoning infroduces a great many novelties, includ-
ing new types of objects; evidence; sentences, new ways of being
a candidate for truth and falsehood; laws, or at any rate modali-
ties; possibilities. One should also notice, on occasion, new types
of classification and new types of explanation (Hacking,3* p. 189).

As one may also put it, Hacking is talking about different kinds of “cognitive
style”.

An aspect that makes the notion of cognitive style, in Hacking’s sense,
useful is that it foregrounds philosophicsl issuss, including epistemnological
issues (also related metaphysical ones). Thus, what matters are “ways of
being a candidate for truth and falsity”; equally crucial are new types of
“evidence”, “laws”, “classification”, and “explanation”. Along such lines,
the focus is on general, and often novel, ways in which scientists conceptual-

& Hacking’s. discussion of “style” builds on A. C. Crombie's historical work on “styles of
scientific thinking”; see Hacking.®® In connection with mathematics, similar uses occur in
several of the chapters of Mancosn, Jergensen and Pedersen,® e.g., Heyrup.3® Compare
also Mancosu.®?
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ize issues, formulate problems, evaluate solutions, systematize results, etc.
Basically, a style of reasoning is a distinctive, integrated manner of doing
those kinds of things.® Understood as such, a reasoning style can crystallize
in the work of one or more thinkers, so as then to shape the direction of a
discipline for a while.

Most of the examples of reasoning styles considered by Hacking come
from the natural and social sciences. They are also very broad and general.
He mentions only 2 few mathematical examples, such as the posfulational
style of the mathematical sciences in Ancient Greece. But nothing rules out
the application of this notion to other cases in mathematics, as one may
argue, including more recent ones. In fact, what we considered above — the
distinctively “conceptual” or “structural” approach to mathematics cham-
pioned by Dedekind — appears to be a very good example.® It involves
all the features highlighted by Hacking: new types of evidence (definitions
and constructions involving set-theoretic techniques, including uses of the
actual infinite, non-constructive and non-computational proofs, etc.); new
laws {laws for generalized classes of structures, appeals to the general no-
tions of set, function, ete.); new types of classification (simple infinities,
number fields, groups, lattices, etc.); and new types of explenation (based
on characteristic concepts, on novel ways of relating phenomena, etc.). To
have a slogan, we may talk about a “structural style of reasoning” as ex-
emplified by Dedekind’s work.d

A general way in which talking about a style of reasoning in this con-
nection is helpful is by drawing attention to the epistemological dimension
of Dedekind’s works. In addition, the specifics of Hacking’s proposal —
concerning the introduction of novel kinds of evidence, law, classification,
explanation, etc. — provide us with conceptual tools for deepening the
analysis. It would be interesting to consider, in detail, each of these tools

5 For a related account of what is important epistemologically in this context, as well
a5 a comparison to how the notion of “style” is used in art history, see Davidson3® Ag
Davidson emphasizes, “styles of reasoning give systematic structurs and identity to our
thought” (p. 141).

¢ Alternatively, one could try to analyze Dedekind’s approach as an example of a Kuhnian
“paradigm” (both in the sense of “exemplar” and “disciplinary matrix”) or as an example
of a Lakatosian “research programme”. Ferreirés® contains remarks about Dedekind
along Kuhnian Hnes, while Corfield?? pursues a Lakatosian divection. In what follows,
1 wiil indicate what is particularly helpful about the notion of style or reascning in our
context. {More on “research programmes” in footnote d, Section 6.)

4 Pedekind’s approach and position have also been called “logicist?, e.g. by his con-
temporaries C. S. Peirce and Ernst Schrider; compare the corresponding discussion in
Ferreirds.S
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and what can be done with it. Let me single out the last one here: the no-
tion of explanation. I think it is correct, and to the point, to see Dedekind’s
structural style of reasoning as involving a new type of mathematical ex-
planation. However, it then needs to be clarified what that implies. Also,
how does talking about explanation in the context of mathematics refate
to discussions of that notion in the philosophy of science, if at all?

In general philosophy of science, the notion of explanation is often dis-
cussed in connection with the notion of causation.® Along such lines, what
philosophers of science — philosophers of physics, biology, sociology, eco-
notnics, ete. —— are interested in is to get at the sense, and the precise
forms, in which appealing to the cause of an event or phenomenon is, or
can be, explanatory. Now, it may seem that causation has no role to play
in mathematics, which may also make talk about mathematical explana-
tion seem dubious. In one sense this is surely correct, namely if “cause” is
used in the narrow sense of “efficient cause” (analyzed in terms of natu-
ral laws, capacities, counterfactual dependence, ete.). Then again, one can
use “cause” in a more general sense as well. In that sense, anything that
is given as the answer to a why-question counts, especially if the answer
tskes the form of “because...”. In mathematics we can, and sometimes
do, ask why-questions. As an example, consider: “Why are certain kinds of
algebraic equations solvable by integers while others aren’s?” Answers to
such questions may then be taken to provide “explanations”, perhaps even
“causal explanations” ! One might also want to compare the corresponding
explanatory power of mathematical theories. ‘

This last remark calls for further clarification, or for a distinction that
will be helpful. The distinction is between a “local” and a “slobal” sense
of “explanatoriness”, both in the sciences and in mathematics. In the case
of mathematics, the locsl sense concerns the manner in which a partic-
ulsr proof of a theorem can be seen as explanatory, or as more or less
explanatory than other proofs of the same result. (The literature in phi-
losophy of mathematics contains some proposals for how to think about
being explanatory in this local sense, e.g., in Steiner;*’ more on this in the
next section.) The global sense of explanatoriness, in contrast, concerns the

¢ Not always; Hempel's and Kitcher's discussions of explanation are exceptions. But
compare Satmon®7 and subsequent works by Cartwright, Humphries, Salmon, and Wood-
ward, among cthers.

f Ty be more careful, one should distinguish between explanatory and other why-
questions in this context. In meking answers to why-questions central to the issue of
explanation, I follow van Frasssen®® and the erotetic literature on which he relies. In
addition, 1 am heavily indebted to Wright.3®
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way in which a whole theory or a general approach to a subject matter is
explanatory, or can be evaluated as more or less explanatory than other
theories or approaches. (Here too the literature contains proposals, e.g.,.in
Kitcher;** again, more on this below.)

‘With these clarifications and distinctions in place, I can now state a
general claim. The claim Is that an important aspect, perhaps even the main
aspect, of what makes Dedekind’s structural style of reasoning significant
epistemologically is its characteristic explanatory power in the global sense.
A lot more would have to be said to substantiate and defend this elaim fully.
I will only have space for a few additional remarks in the next section, before
wrapping things up more generally.

6. Explanations, background assumptions, and
understanding

While it will be crucial for us to get clear about the explanatory power of
Dedekind’s approach in the global senss, as just suggested, it helps to start
with the local sense, especially since the two senses are not unrelated. In
particular, it helps to examine a specific proposal for how to think about
explanatoriness at the local level. '

The proposal I have in mind is due to Mark Steiner; in his own words:

[Aln explanatory proof makes reference to a characteristic property
of an entity or structure mentioned in the theorem. It must be
evident, that is, that if we substitute in the proof a different object
of the same domain, the theorem collapses; more, we should be able
0 see as we vary the object how the theorem changes in response.
{Steiner,® p. 143)

It is not obvious whether this criterion for being an explanatory proof ap-
plies generally, nor whether it characterizes being explanatory fully. It has
been criticized seriously in connection with other examples.* Nevertheless,
Steiner’s criterion looks promising in connection with Dedekind’s work, es-
pecially in algebraic number theory. As we saw, it was a main goal for
Dedekind to come up with “the right concepts”, and thus to identify “char-
acteristic properties” of various entities and operations. Moreover, the right
concepts for him were exactly those that apply to a wide range of cases, or
even, allow us to distinguish those cases for which a certain proof worked
from others.

& For references and further discussion, see Hafner and Mancosui? and Mancosu.*

Dedekind, Structural Reasoning, ond Mathematical Understanding 165

Let me connect this point with an insight gained by looking at expla-
nations as answers to why-questions. A main advantage of approsching the
notion of explanation that way — besides the fact that ¥ makes its ap-
plicability in mathematics plausible — is that we are directly led to the
erucial role of background assumptions. Consider asking a why-question,
in the form “why p?”, and answering it, with “because ¢”. Evidently, the
whole exchange can only be successful if a number of presuppositions are in
place. Two of these presuppositions are especially noteworthy. The first is
the availability and determinate nature of what is often called the “contrast
class” for p.? It has to be clear, that is, what the alternatives to p are in the
context st hand: p as opposed to p’, p”, ete.; otherwise it is not even clear
what question is being asked by using the phrase “why p?” Second, it has
to be clear, again in context, what kinds of explanatory factors or “causes”
are relevant.® These two presuppositions are closely related. Distinguishing
p from p’, p®, etc. will have to be in terms of specific features; and those
features will be identical with, or intimately related to, the explanatory
factors relevant in the context at hand.

For illustration, consider again our mathematical example from above:
“Why are certain kinds of algebraic equations solvable by integers while
others aren’t?” In formulating the question in this way, the appeal to a
contrast class is readily apparent, at least in a general way. The fact that
certain explanatory factors are presupposed is more hidden. Now, compare
Dedekind’s approach again with Kronecker's. For Kronecker, the contrast
class consists of a tightly circumscribed range of equations, corresponding
to number fields constructed finitistically; and the presupposed explanatory
factors are computational ones. For Dedekind, the contrast class is deter-
mined by an enlarged class of number fields, thus consisting of a larger
number of equations; and the relevant explanatory factors involve entities
defined set-theoretically and comsidered structurally. Altogether, the most
radical differences between Dedekind’s and Kronecker’s approaches can be
located at this level, I would suggest. They consist of differences in the gen-
eral background assumptions for their respective explanatory enterprises.

We are now also In a position to relate the global and local senses of
explanatoriness to each other, at least in our case. Consider again Steiner’s

® Van Fraassen3® contains an illuminating discussion of the notion of contrast class.

< In Wright,®® the author talks about a presupposed “causal matrix” in this connection.
1 should add that, with respect to this second aspect, Wright’s and my approach differs
significantly from van Fraassen’s (which appesals to a somewhat mysterious, and often
criticized, “relevance relation” at this point).
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criterion: that at the local level, i.e., the level of particular theorems and
proofs, what is crucial is to identify the “characteristic property of an entity
or structure”; also, to show that “if we substitute in the proof a different
object of the same domain, the theorem collapses”; or even, to establish
how “as we vary the object the theorem changes in response”. Notice that
such a criterion only has a chance of applying if it is clear, first, what the
relevant “objects of the domain” are and, second, which kinds of “char-
acteristic properties” count. And again, those are exactly the two ways
in which Kronecker’s and Dedekind’s approaches differ radically. We get
the following consequence: Considered just locally, the two approaches are
very hard to compare, if not incommensurable, since they differ so much
in their respective background assumptions (thus the continuing disagree-
ment between Dedekindians and Kroneckerians). At the global level, there
may be more room for comparative evaluation. In particular, we can ask
in which way, and $o what degree, various background assumptions have
proved fruitful mathematically.d '

A comparative assessment at the global level will still not be straight-
forward, partly because fruitfulness is hard to quantify, partly because it is
relative to the goals one is pursuing {e.g., computational versus structural
goals), and partly because it becomes manifest only over $ime. It may also
go through varying phases; e.g., while an approach may not be fruitful for
a while, it may pick up again later.® And in any cese, assessing degrees of
fruitfulness is not the same as providing criteria for explanatoriness, nei-
ther at the local level {where something like “getting at the core of things”
seems t¢ play a role, together with values such as simplicity and purity,
in ways that are hard to capture’) nor at the global level (where unifi-
cation, systematicity, etc. seem to play some role, although it is not clear

9 Here Lakatos' suggestions for how 0 evaluate “research programmes” may be of help.
Compare again Corfield®® {and footnote ¢, Section 5), earlier also Hallett,®® among
others. As to incommensurablity, I do not mean to push this issue too far. It may be
possible to find background assumptions and a framework within which comparisons can
he made, although the difficulty will be finding ones acceptable to both sides.

¢ Kronecker’s approach was quite fruitful initially; it was then overshadowed, for some
time, by work along Dedekindian lines; but it became fruitful again in the middle of
the twentieth-century, in research by Grothendieck and others. Compare again Reed?!
{ch. 4) and Corfield?? {ck. 8).

f Explanatory power at the local level, like mathematical understanding in general (see
below), may be toc vague or multi-faceted a notion o be captured in any simple formula.
However, there is some recend research in automated theorem proving, as discussed in
Avigad®® and Vervioesem,*® which contains potentially fruitful, and very application-
oriented, refiections on related issues.
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which one exactly®). Still, I hope that some new light has been shed on how
to analyze the differences between Dedekind’s and Kronecker’s methodolo-
gies more deeply, and especially, on what makes Dedekind’s distinctive and
noteworthy. ) )

Let me add two further clarifications, now of the sense in which this all
concerns epistemology. Both clarifications will involve the notion of under-
standing, which first needs to be clarified in itself. For present purposes, I
want to use “understanding” not in contrast to “explanation” (as was com-
mon in nineteenth- and early-twentieth-century debates about the unity of
science, i.e., about whether the methodologies of the human and the nat-
ural sciences are fundamentally different or not). Rather, “understanding”
and “explanation” are taken to be correlative terms, along the following
lines: What a successful explanation does is to inprove our understanding
of things; and an explanation is better the more it does s0." The main claim
I argued for above can then be put thus: The most characteristic, and per-
haps the most valuable, aspect of Dedekind’s approach is the specific way
in which it sllows us to understand mathematical phenomena.!

Second, epistemology is often understood to be the philosophical study
of human knowledge, and specifically, of its forms of justification and its
connections to truth, also its means, conditions, limits, etc. However, for our
purposes this is too narrow — it tends to exclude the topic of understand-
ing from epistemology. Insofar as that is the case, “understanding” stands
opposed to “knowledge”. In a recent paper, Howard Stein makes a related
point, by distinguishing between the “enterprise of understanding” and the
“enterprise of knowledge” (Stein, ™ p. 135). Both enterprises are important,
as he emphasizes; they are also often indricately intertwined. Nevertheless,
one can distinguish them conceptually. The enterprise of knowledge con-
cerns what epistemologists typically focus on: justification, fruth, etc. The
enterprise of understanding, in contrast, has to do with our “grasp of ideas
or concepts” and their  clarification (ibid.}. I would add that much of what
we discussed above — distinguishing different styles of reasoning {based on
different sets of concepts), considering their explanatory power (partly in

% Compare Kitcher®! and the ensuing debate. Very briefly, I doubt that either unification
or systematicity, in themselves, account for explanatoriness, especially at the local level;
but they seems to play some role, perhaps of a supplementary kind, in connection with
global explanatory power.

b Here I again follow Wright,3? who in turn builds on Scriven, Austin, and Wittgenstein.
i Related discussions of mathematical understanding, including its connection $o proof,
can be found in Teppenden,®® Avigad,®* Vervloesem,*® and the corresponding parts of
Mancosu. g



168 FErich H. Reck

terms of “finding the right concepts”), etc. — falls within the latter as well.
Put in these terms, another main goal in this paper has been to make

gvident that Dedekind’s approach to mathermatics is worth studying as -

part of the “enterprise of understanding”, and thus as part of epistemology
understood in a broad sense.

7. Connections to foundational and metaphysical issues

My focus in this paper has been on epistemologically significant aspects of
Dedekind’s work, including clarifying $he sense of epistemology involved.
A striking feature of his appreoach is, however, that it forms a tightly inte-
grated whole. More specifically, epistemological aspects are tied closely to
foundational and metaphysical aspects.

What I have in mind here is the following: As argued above, Dedekind’s
characteristic way of understanding mathematical phenomena — in terms
of his abstract, conceptual, or structural style of reasoning and explana-
tion — involves corresponding background assumptions. Among them are
agswnptions about the factors one can appeal to in definitions, consiruc-
tions, and proofs. For Dedekind, unlike for Kronecker, infinite sets, a gen-
eralized notion of function, etc., are available; thus, he gives definitions of
various operations in terms of their set- and function-theoretic behaviors,
independently of particular forms of representation and methods of calcu-
lation. With respect to the confrast classes assumed, we noted his use of
enlarged classes of objects and structures, the preference for finding uniform
treatments for them, ete. Overall, mathematicsl phenomena are treated in
abstract relational and functional, thus structural, terms.

These aspects are crucial for Dedekind’s work in algebraic number the-
ory, as | argued above. But not only that; the same aspects are also charac-
teristic for his other mathematical works: his contributions to Galois the-
ory, to the theory of algebraic functions, to lattice theory, etc. In fact,
they even shape Dedekind’s foundational works, including his treatments
of the natural and real numbers. Here too, we find the use of set-theoretic
constructions, the acceptance of the actual infinite, the employment of a
general notion of function, the consideration of generalized classes of cases,
their treatment in abstract relational and functional terms, the search for
internal, characteristic properties, etc. In other words, the same conceptual
tools are employed throughout.

It is tempting to think, again, that it is Dedekind’s recognition of their
fruitfulness in his mathematical work — his realization of how Instrumental
they are in increasing our understanding of, say, the solubility of algebraic
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equations ~— that underwrites the use of these tools also in his foundational
work. More likely, perhaps, is that he realized their explanatory power in
both cases together, so that there was mutual reinforcement.* In either
case, we can see that mathematical and foundational concerns need not
be as separate as is often assumed. If I am right, they are of a piece in
Dedekind’s work.?

Finally, the same poiut can be made about the close connection between
epistemological and metaphysical aspects in Dedekind’s work. A central fea-
ture of his methodology is to study mathematical objects and operations
not in terms of particular formalisms or symbolic representations. Dedekind
recognized that it is epistemologically fruitful — that it increases our under-
standing in mathematics — if we investigate them, instead, in set-theoretic,
abstract relational, and generalized functional terms. But making this shift
also leads away from conceiving of the nature of mathemnatical entities and
phenomena in two traditional ways: along narrowly formalist lines, so that
all we are dealing with are empty symbols, mere formulas, etc.; in broadly
physiealist terms, i.e., by making empirical applications of mathematics
essential, so that numbers, e.g., are conceived of in terms of concrete quan-
tities. In other words, Dedekind’s episternclogical shift calls into question
formalist, physicalist, and similar metaphysical views.®

What Dedekind’s methodology suggests, instead, is to think of math-
ematical objects, concepts, and functions in structuralist terms, The re-
sulting metaphysical position — Dedekind’s “logical structuralism” — has
already been analyzed in Reck,*® but without paying much attention to
the epistemological side, as elaborated in the present paper. In the end,
metaphysical and epistemological aspects are flip sides of the same coin, in

3 To be more definite here, the precise chronelogy of Dedekind’s main ideas and results
would have to be established (by studying his Nachloss, correspondence, etc.). I intend
to do so in future work.

b In Tappenden,3! the same point is made about Riemann and Frege. The widespread
separation of mathematical and foundational concerns, by philosophers and mathemati-
cians, is ustrated in it as wel.

¢ Whether or not formalist, physicalist, and related metaphysical positions should be
rejected completely, and Dedekind’s simply adopted, is ancther question. His “logical
structuralist™ position Is not without its weaknesses; other alternatives have come up
since Dedekind’s time; and even a position suck as narrow formalism has led to important
insights, as Kronecker's case illustrates. Moreover, there may not be one metaphysical
position that does justice to mathematical facts and phenomena in zll their richness,
especially since the practice of mathematics keeps evolving. Still, Dedekind’s approach
has led to novel and deep insights as well, as seems indubitable, at least for those who
do not reject its background assumptions.
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Dedekind’s case and more generally. If this is correct, only a joint treat-
ment can do full justice o either side. With respect to this conclusion too,
much more would have to be said to make it fully convincing; a single, short
article can only scratch the surface. Indeed, 2 whole book would seem to
be needed fo do an adequate job. The present paper is perhaps best seen
as motivating a corresponding book project. I hope I will have a chance to
pursue such a project furthér in the near future,
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